GROUND ANCHORS

STRESSING AND TESTING

TYPICAL ANCHORAGES SYSTEM

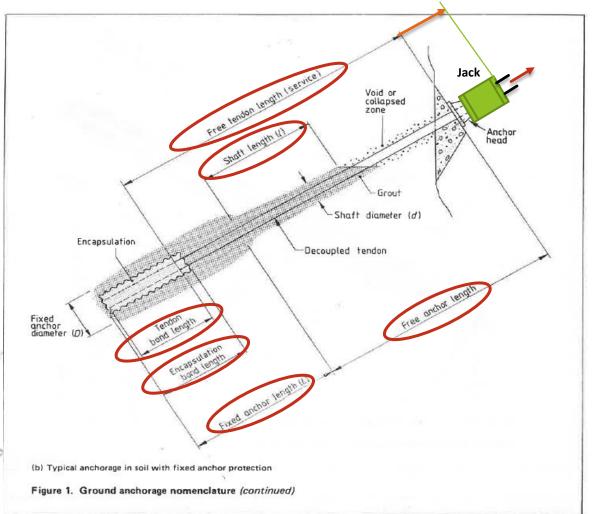
2.20 length

2.20.1 fixed anchor length. The designed length of the anchorage over which the tensile load is capable of being transmitted to the surrounding ground, (see figures 19 and 22).

NOTE. This may be the same as the tendon bond length.

2.20.2 free anchor length. The distance between the proximal end of the fixed anchor and the anchor head.

2.20.3 apparent free tendon length, is calculated from the load/elastic displacement data following testing, (see 11.2.9) to indicate the length of tendon which is apparently fully decoupled from the surrounding ground or grout.


2.20.4 <u>encapsulation bond length</u>. The overall length of the outer perimeter of the encapsulation, which is bonded to the surrounding grout in the case of a protected anchorage.

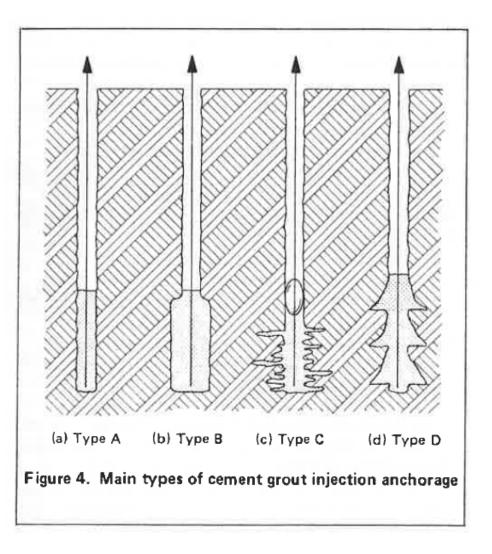
2.20.5 shaft length. The length of grout filled hole in front of the proximal end of the fixed anchor. The grout is often placed prior to stressing and therefore is capable of mobilizing resistance to withdrawal.

2.20.6 <u>free tendon length.</u> The designed length of the tendon that is decoupled from the surrounding ground or grout during stressing.

NOTE. During the initial stressing operation, the free tendon length may be extended by the stressing length, depending on the type of contrasting system employed (see figure 1(a)).

2.20.7 tendon bond length. The length of tendon that is bonded directly to the grout and capable of transmitting the applied tensile load.

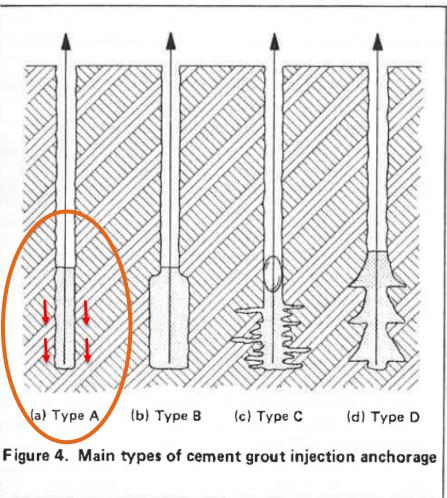
ULTIMATE LOAD CAPACITY OF ANCHORAGE


Dependent on the followings factors:

- definition of failure;
- mechanism of failure;
- area of failure interface;
- ground properties mobilized at failure interface;
- stress conditions acting on the failure interface at the moment of failure.

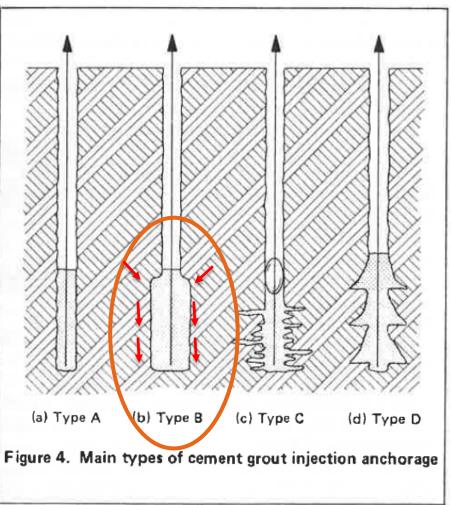
TYPES OF ANCHORAGES

Anchorage types refer


- to anchorage pull-out capacity for a given ground condition is dictated by the anchorage geometry.
- The transfer of stresses from the fixed anchor to the surrounding ground is influenced by construction technique, particularly the grouting procedure, and
- to a lesser extent the method of drilling and flushing.
- BS8081 defines 4 anchorage types

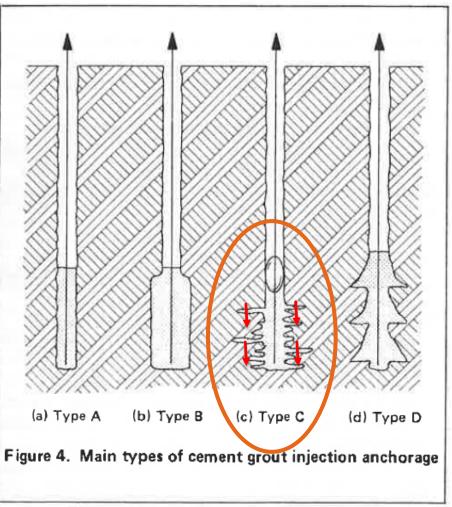
TYPES OF ANCHORAGES

Type A anchorages:


- most commonly employed in rock and very stiff to hard cohesive soils (commonly used for anchored retaining wall system in Malaysia).
- consists of tremie (gravity displacement) grouted straight shaft boreholes, which may be temporary lined or unlined depending on hole stability.
- Resistance to withdrawal is dependent on side shear at the ground/grout interface.

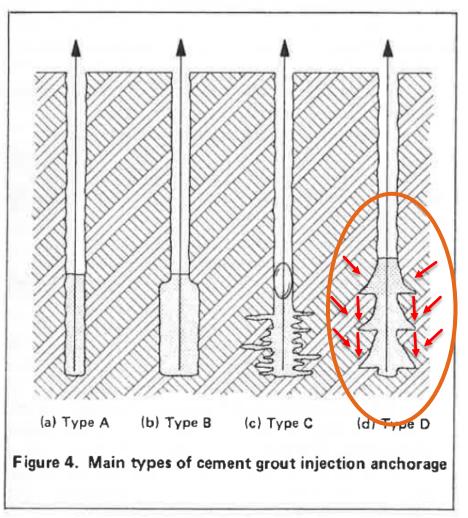
TYPES OF ANCHORAGES

Type B anchorages


- Most commonly employed in weak fissured rocks and coarse granular alluvium, but also popular in fine grained cohesionless soils.
- Consist of low pressure grouted boreholes via a lining tube or in-situ packer (typically grout injection with pressure <1000kN/m²).
- Dia. of the fixed anchor is increased with minimal disturbance as the grout permeates through the pores or natural features of the ground.
- Resistance to withdrawal is dependent on side shear, but an end bearing component may be included when calculating the ultimate capacity.

TYPE OF ANCHORAGES

Type C anchorages


- Commonly applied in fine cohesionless soils with some success in stiff cohesive soils.
- Consist of boreholes grouted to high pressure (typically > 2000kN/m²), via lining tube or in situ packer, creating an enlarged fixed anchor length.
- Fixed anchor length is enlarged by hydrofracturing of the ground mass to give a grout root or fissure system beyond the core diameter of the borehole.
- Resistance to withdrawal is assumed uniform shear along the fixed anchor.

TYPE OF ANCHORAGES

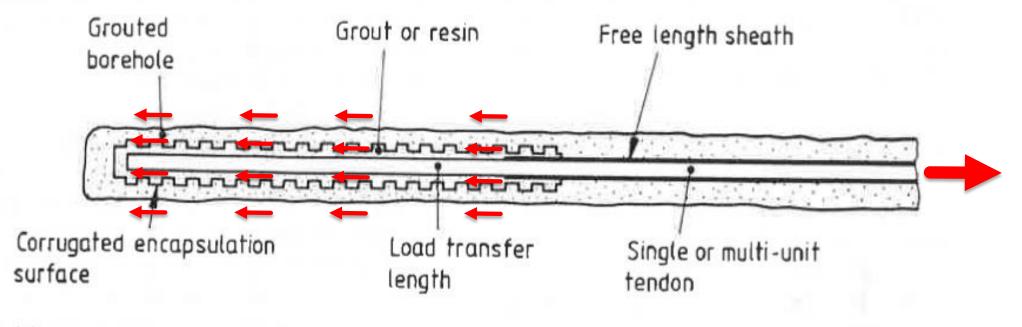
Type D anchorages

- This type is employed most commonly in firm to hard cohesive soils,
- consist of tremie grouted boreholes in which a series of enlargements, either bells or underreams, have previously been formed.
- Resistance to withdrawal is dependent on side shear and end bearing.

TYPE A ANCHORAGE DESIGNS

6.2.3.2 Type A anchorages. For such anchorages, designs are based on the assumption of uniform bond distribution (Coates 1970), (Fargeot 1972), (Littlejohn 1972), (Mascardi 1973) and (White 1973). Thus the pull-out capacity of the fixed anchor T_f , in kN, is estimated from equation (1):

$$T_{\rm f}$$
 = $\pi DL \tau_{\rm ult}$


where:

 τ_{ult} is the ultimate bond or skin friction at rock/grout interface (in kN/m²);

(1)

- D is the diameter of fixed anchor (in m);
- L is the length of fixed anchor (in m).

TYPICAL LOAD TRANSFER MECHANISM OF ANCHORAGE

(a) Encapsulation with full length tendon load transfer

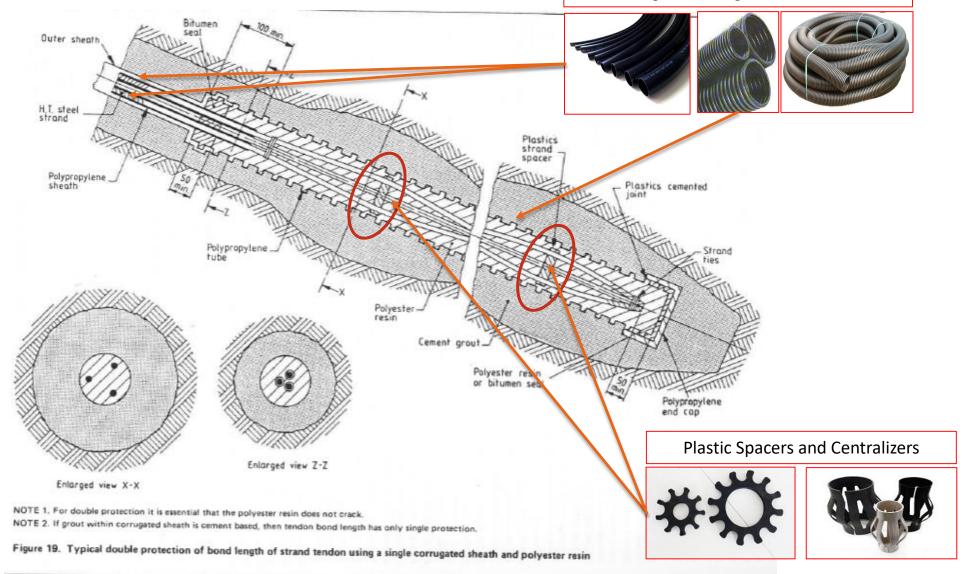
ANCHORAGE COMPONENTS

7-Wire Strands: 12.9mm, 15.2mm dia. commonly Used

Anchor Bracket & Metal Trumpet

HDPE Corrugated Ducting & PVC Protective Sleeve

Anchor Blocks & Wedges


Plastic Spacers and Centralizers

TYPICAL DOUBLE PROTECTION OF BOND LENGTH

HDPE Corrugated Ducting & PVC Protective Sleeve

TESTING (Clause 11)

- The testing procedures and acceptance criteria of ground anchorage complies in accordance with BS8081:1989 - "Code of practice for ground anchorage",
- BS8081:2015 (Aug.31,2015 release),
- BS8081:2015 +A1:2017 (latest) Refer as
 "Code of practice for grouted anchors"
- Stressing of the ground anchors shall only be allow to commence once the compression tests on grout cubes of 100mm have achieved at least 30 Mpa grout compressive strength.

- The BS standard required three
 (3) classes of tests to be
 performed on the anchorage as
 follows:
 - On-site proving tests, Clause 11.2
 - on-site suitability tests, Clause 11.3, and
 - on-site acceptance tests, Clause 11.4.

PROVING TESTS (Clause 11.2)

- Proving tests may be required to demonstrate or investigate to the designer, in advance of the installation of the working anchorages,
 - the quality and adequacy of the design in relation to the ground conditions and materials used in the assembly, e.g. tendons, anchor head assembly,
 - the levels of safety that the design provides , e.g. factors as load capacity, load extension behaviour, relaxation and creep.
 - Ideally tested to failure.
 - Carry out when detailed ground conditions are not known or prior experience of anchoring does not exist, or in some cases where previous anchorage knowledge is available.

ON-SITE SUITABILITY TESTS (Clause 11.3)

- On-site suitability tests provided in the contract are required to prove the suitability of the anchorages for the condition on site, may be applied to anchorages to be used in the works, or may be additional anchorage if allow in the contract.
- The anchorage used for the test should be constructed in exactly the same way and located in the same ground as the working anchorages and should be used as reference anchorages against which the performance of the working anchorage can be judged.
- At least the first <u>3 anchorages</u> should be subjected to suitability tests with further tests for each category of anchorages envisaged in the works. Category includes
 - Geometry, e.g. vertical or inclined
 - Ground type, e.g. clay, gravel or rock
 - Load capacity.
- The period of monitoring should be sufficient to ensure that the prestress or creep fluctuation stabilize within tolerable limits.

ON-SITE ACCEPTANCE TESTS (Clause 11.4)

- On-site acceptance tests are carried out on <u>all anchorages in the works</u>
- to demonstrate the <u>short term</u> <u>ability</u> of the anchorage to support a load that is greater than the design working load, and
- To demonstrate and assess the <u>efficiency of load transmission</u> to the fixed anchor zone.
- To compare the short term result with those obtained from on-site suitability tests that provide a guide to longer term behaviour.

STRESSING EQUIPMENT (Clause 9, 10.6.2)

Hydraulic jacks

- commonly used are multi-strand type.
- Should be capable of tensioning the tendon to not less than 80% of its characteristic strength and proof tested to at least 110% of its rated capacity.
- should be initially calibrated by the manufacturer, and recalibrated at the commencement of the project.
- supplied with a calibration certificate for inspection <u>at least</u> <u>every year</u> using properly design test equipment with an absolute accuracy not exceeding 0.5% and the test records should tabulate the relationship between the load carried by the jack and the hydraulic pressure when the jack is in the active mode with load both increasing and decreasing.

Load cells

- Should be robust and properly protected for site work.
- should be provided with calibration certificates and should be employed in the range 10% to 100% of its rated capacity.
- Should be calibrated after every 200 stressings or after every 60 days use, whichever is more frequent, or yearly to provide an absolute accuracy of not exceeding 0.5%.
- Load read-out or recording instruments should be calibrated with actual cable to be used on site.
- The instrument should be provided with input voltage indicators, whether mains or battery operated.

Pressure gauge with hydraulic pumping unit

- should be calibrated initially against dead weight equipment or the equivalent, properly design for the works.
- supplied with a calibration certificate for inspection.
- Should be calibrated either after every 100 stressings or after every 30days, whichever is the more frequent, against properly maintained gauge or whenever they have been subjected to shock.
- Pumping unit should be rated to operate through the pressure range of the stressing jack.
- Pumping unit on which the gauge is mounted should not be more than 5m from the jack and reasonably free from vibration.
- Maximum capacity of pressure gauges should lie within the range 80% to 160% of the characteristic strength of the tendon. <u>i.e. about</u> <u>1,270kN to 2,550kN for 700kN anchorage</u>.

ANCHORS STRESSING EQUIPMENTS

ANCHORS STRESSING AND TESTING SET-UP

TESTING (Clause 11)

Some common terms used in the testing include:

- Maximum Load = normally 80% of the characteristic strength (for proof load test)
- Lift-off-Load = minimum load at lift-off test.
- Residual Load at lock-off = load remaining in the anchorage (110% of working load)
- proof load = maximum testing load (150% working load of permanent ground anchorage)
- Check-lifting or "lift-off" test
- Working Load = safe load of the anchorage

2.21 load

2.21.1 lift-off load. The minimum load monitored during a restressing operation that permits a locking nut to turn on a bar tendon or provides a clearance or lift (see **10.6.3.2**) in the case of a wire or strand tendon.

- 2.21.2 lock-off load. The load transferred to the anchor head immediately on completion of a stressing operation.
- **2.21.3 proof load.** The maximum test load to which the anchorage is subjected during the initial stressing phase.
- 2.21.4 proof load factor. The ratio of proof load to working load (see table 2).
- 2.21.5 residual load. The load remaining in the anchorage > at any time during service.
- 2.21. working load. The safe load (T_w) of the anchorage.

2.22 mechanical anchor. A mechanical device attached to the distal end of a rock bolt which, when expanded against the sides of the borehole, generates friction to provide restraint for the tensile load.

TESTING (Clause 11)

Anchorage testing includes;

- 1) Load-Displacement Test cyclic loading and unloading
 - Method 1: Plotting of Load-Displacement Data and observation of load loss at proof load, OR
 - Method 2: Plotting of Load-Time Data and observation of shortening of anchor head due to load loss at proof load.
- 2) Monitoring of at Residual Load
 - Method 1: Rate of Prestress Loss, OR
 - Method 2: Rate of Displacement.
- 3. Calculation of Apparent Free Tendon Length Limits

Main aims;

- 1. to tension the tendon and to anchor it at its secure load,
- 2. to ascertain and record the behavior of the anchorage so that it can be compared with the behavior of control anchorages.

TESTING - (1) Load-displacement Test Clause 11.2.5, 11.3.3, 11.4.3

- Proof load is taken as 150% T_w (for on-site suitability test and on-site acceptance tests), for e.g. 700kN or 70tons working anchorage shall be 1,050kN or 105tons.
- But for "Proof load test" it is taken as 80% of the characteristic strength of the tendons.
- Load-displacement test.
 - Load-displacement data should be plotted continuously over the range 10%T_w to 150%T_w with load increments not greater than 50%T_w where displacements are being carefully monitored.
 - During unloading, displacements at not less than two load increments, in addition to the datum, should be measured, preferably at one third points with respect to the proof load.
 - (Refer Table 13, 14 and Fig. 31, 32 for proof load tests)
 - (Refer Table 17 & Fig. 35 for on-site suitability tests);
 - (Refer Table 18 & Fig. 36 for on-site acceptance tests).

- Each loading stage in the <u>1st cycle</u> should be held only for the time necessary to record the displacement.
- But held for at least 1min for each stage loading in the 2nd, 3rd cycle and further cycles as requires, the displacement shall be recorded <u>at the</u> <u>beginning and end of each period</u>.
- At proof loads, this period extended to at least 15min with an intermediate displacement reading at 5min.
- On completion of the final cycle, reload in one operation to 110% T_w and lock-off. Reread the load immediately after lock-off to establish the <u>initial</u> <u>residual load</u> using Check-lift or lift-off test.
- This moment represents zero time for monitoring the load displacement-time behavior to be used for further monitoring of the Residual Load compliance.

TESTING - Recommended Loading Increments and Minimum period of Observation (Proof load tests)

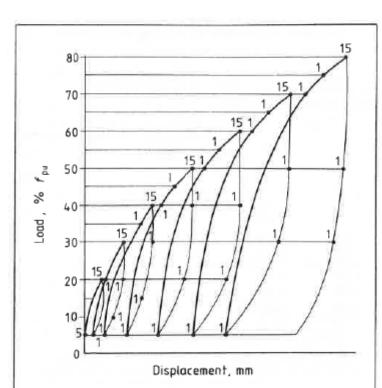


Figure 31. Recommended load increments and minimum periods of observation for proving tests on anchorages where the ground conditions are not known or prior experience of anchoring does not exist

observ	ation for ions are r	proving	tests on a	nchorage	s where t	mum perio he ground ichoring de	
Load in	crements	(% f _{pu})					Minimum period of
1st cycle	2nd cycle	3rd cycle	4th cycle	5th cycle	6th cycle	7th and 8th cycles	observation
%	%	%	%	%	%	%	min
5	5	5	5	5	5	5	1
10	20	30	40	50	60	70	1
15	25	35	45	55 x	65 -	75	1

60 >

40

20

5

70 x

50

30

5

80

50

30

5

15

NOTE. It is recommended that load-displacement results should be plotted as the test proceeds. In this way it should be possible at an early stage to observe trends and, in particular, the yield of the fixed anchor as failure approaches.

50

40

20

5

20

15

10

5

30

20

10

5

40

30

15

5

Table 14. Recommended load increments and minimum periods of observation for proving tests on anchorages where previous anchorage knowledge is available

Load incre	ments (% f _{pu})	Minimum period of observation			
1st cycle	2nd and 3rd cycles	or observation			
%	%	min			
5	5	1			
10	30	1			
20	40	1			
30	50	1			
40	60	1			
50	70	1			
60	80	15			
40	50	1			
20	30	1			
5	5	1			

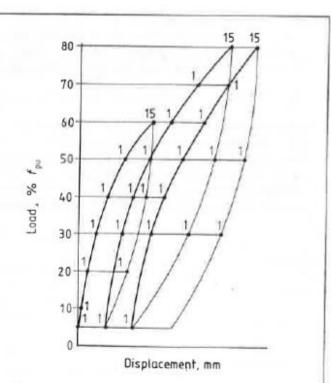


Figure 32. Recommended load increments and minimum periods of observation for proving tests on anchorages where previous anchorage knowledge is available

NOTE. As an alternative use figure 35 where T_w is known.

Proof load can taken as 80% of the characteristic strength of tendon, for e.g.
700kN or 70tons working anchorage with 6 no.
7-wire strands shall be about 1,200kN.

TESTING - Recommended Loading Increments and Minimum period of Observation (On-site suitability and on-site acceptance tests)

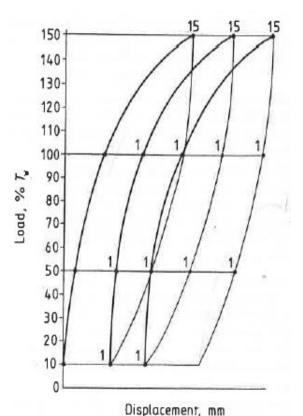


Figure 35. Recommended load increments and minimum periods of observation for on-site suitability tests

	 Recommendation received and the second secon					
	y anchorages			Minimum		
load increment 1		1oad incre (% τ _w)	ment	period of observation		
1st load cycle*	2nd load cycle	1st load cycle*	2nd load cycle			
%	%	%	%	min		
10	10	10	10	1		
50	50	50	50	1		
100	100	100	100	1		
125	125	150	150	15		
100	100	100	100	1		
50	50	50	50	1		
10	10	10	10	1		

 For this load cycle, there is no pause other than that necessary for the recording of displacement data.

Table 17. Recommended load increments and minimum periods of observation for on-site suitability tests

load incre (% T _w)	ry anchorages ment	load incre (% T _W)	Minimum period of observation	
1st load cycle*	2nd and 3rd load cycles	1st load cycle*	2nd and 3rd load cycles	
%	%	%	%	min
10	10	10	10	1
50	50	50	50	1
100	100	100	100	1
125	125	150	150	15
100	100	100	100	1
50	50	50	50	1
10 .	10	10	10	1

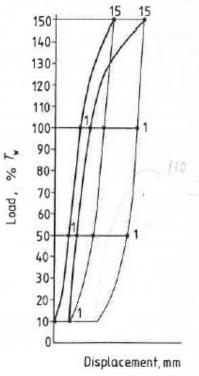


Figure 36. Recommended load increments and minimum periods of observation for on-site acceptance tests

- Proof load is taken as 150% T_w (for on-site suitability test and on-site acceptance tests), for e.g. 700kN or 70tons working anchorage shall be 1,050kN or 105tons.
- Commonly adopted incremental test loadings and unloadings are 20%, 50%, 100%, 150%, 100%, 50% and 20%.

TESTING -at Proof Load Stage Clause 11.3.4, 11.4.4

(Method 1) Proof load—time data

- If the proof load at 150% T_w has <u>not</u> <u>reduced</u> during the 15 min by more than 5% after allowing for any temperature changes and movements of the anchored structure, <u>the</u> <u>anchorage may be deemed to be</u> <u>satisfactory</u> with this clause.
- If a greater loss of prestress is recorded, the anchorage should be subjected to <u>2 further proof load</u> cycles, and the behavior recorded.
- If 5% criterion is exceeded on either cycle, the proof load should be reduced to a value at which compliance can be achieved, and the anchorage may be accepted as a lower capacity as appropriate.

- (Method 2) Displacement-time data
 - As an alternative, the proof load can be maintained by jacking, and the anchor head displacement monitored after 15min.
 - If the creep is less than 5% ∆e, the anchorage may be deemed to be satisfactory.
 - If a greater displacement is recorded, the anchorage should be subjected to <u>2 further proof load</u> cycles, and the behavior recorded.
 - Similarly, if 5% criterion is exceeded on either cycle, the proof load should be reduced to a value at which compliance can be achieved, and the anchorage may be accepted as a lower capacity as appropriate.

Initial residual load \times free tendon length

∆_e =

TESTING - at Residual Load Stage Clause 11.3.6, 11.4.6

(Method 1) Residual load-time data.

- At residual load, <u>load-time data</u> shall be monitored at <u>5min,15min</u> and <u>50min</u>, commencing at <u>110%</u> T_w and continuing for <u>10 days</u> (for on-site suitability test), with observation period as given in <u>Table</u> <u>15</u> and using either load cell or pressure gauge.
- Where the load has not attained a constant value after allowing for temperature, structural movements and relaxation of the tendon, the test shall be extended by monitoring at 7days intervals, approximately, for a period of up to 30 days or until the load becomes constant, whichever is the lesser period.
- Reading within 1st 1500min or 25hrs should only be carried out using the monitoring equipment such as load cell that has a relative accuracy of at least 0.5%.
- The rate of loss from initial residual load should reduce to 1% or less per time interval for the observation periods given in Table 15.
- Note: If the rate of load loss exceed 1% for on-site acceptance test after 50min monitoring, further readings may be taken for observation up to 10 days.
- If after 10 days, the anchorage fails to hold, the anchorage should be deemed not to comply.

Period of observation	Permissible loss of load (% initial residual load)			
min	%			
5	1			
.15	2			
50	3			
150	4			
500*	5			
1 500 (approx. 1 day)	6			
5 000 (approx. 3 days)	7			
15 000 (approx. 10 days)	8			

TESTING - at Residual Load Stage Clause 11.3.6, 11.4.6

(Method 2) Residual Displacement-time data.

- At residual load, <u>displacement-time data</u> may be monitored at <u>5min,15min and 50min</u> commencing at <u>110%Tw</u> and continuing for <u>10</u> <u>days</u> (for on-site suitability test), with observation period as given in <u>Table 16</u> and using dial gauges and a steel rule.
- Where the displacement has not reached a constant value after allowing for temperature, structural movements and relaxation of the tendon, the test should be extended by monitoring at 7days intervals, approximately, for a period of up to 30 days or until the displacement becomes constant, whichever is the lesser period.
- Restressing or constant load methods may be used to monitor the displacement at initial residual load.
- ► The rate of displacement should reduce to 1%∆e or less per time interval for the observation periods given in Table 16.
- where $1\% \Delta e$ is the displacement equivalent to the amount of tendon shortening caused by prestress loss of 1% initial residual load.
- Note: If the rate of load loss exceed 1% for on-site acceptance test, further readings may be taken for observation up to 10 days.
- If after 10 days, the anchorage fails to hold, the anchorage should be deemed not to comply.

Table 16. Acceptance or displacement-time behav Period of observation min 5 15 50 150 500* 1 500 (approx. 1 day) 5 000 (approx. 1 days) 15 000 (approx. 10 days)	Permissible displacement
	(% of elastic extension Δ_{e} of tendon at initial residual load)
min	%
5	1.
15	2
50	3
150	4
500*	5
1 500 (approx. 1 day)	6
5 000 (approx. 3 days)	7
15 000 (approx, 10 days)	8

Initial residual load \times free tendon length

 $\Delta_e = -$

Area of tendon \times elastic modulus of tendon

TESTING - Apparent Free Tendon Length

Apparent free tendon length = The apparent free length of the tendon may be calculated from the load-elastic displacement curve over the testing range - 10% T_w to 150% T_w (or proof load).

Elastic modulus can be obtained from the manufacturer's mill certificate.

be abandoned (see M.6 and appendix H).

Apparent Free Tendon Length Limits

11.2.12 Apparent free tendon length limits. The apparent free tendon length calculated in accordance with 11.2.9 should be not less than 90 % of the free length intended in the design nor more than the intended free length plus 50 % of tendon bond length intended in the design or 110 % of the intended free tendon length. The latter upper limit takes account of relatively short encapsulated tendon bond lengths and fully decoupled tendons with an end plate or nut (see figure 34) (see also M.11 for discussion on permanent displacement of fixed anchor where ground anchorage is subjected to cyclic loading during service). Where the observed free tendon length falls outside the limits, a further two load cycles up to the proof load should be carried out in order to gauge reproducibility of the load-displacement data. If the anchorage behaves consistently in an elastic manner, the anchorage need not

Where:

2

3

- A_t = cross section area of the tendon
- E_s = manufacturer's elastic modulus for the tendon unit
- Δ_{e} = elastic displacement of the tendon monitored at peak cycle load minus the displacement at datum load, after allowing for structural movement Upper Limit
- = peak cycle load minus datum load 110 % design free length or design free length plus 50 % tendon bond length

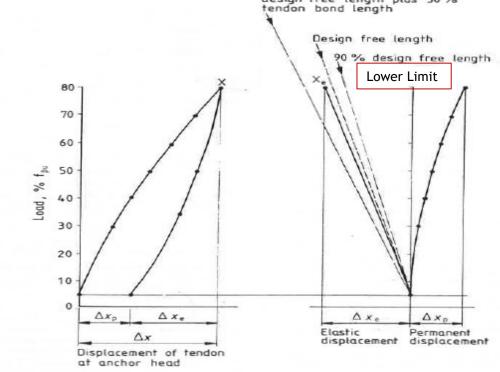


Figure 34. Acceptance criteria for displacement of tendon at anchor head

TYPICAL MILL CERTIFICATE OF PC STRANDS

Mill Test Certificat 前述保障力的論 Southern PC Steel S No 5 Jalan Utas 15/7, Seks 10200 Shah Alam, Selango	dn Bhd (55573-U)		*		GUALITY SYSTEM SYSTEM UKAS <u>SHORE</u> 674 074	j iž ∠_ Southern Ste
Customer Information	WIJAYA DAYA SDN BHD LOT NO. 4-7, 8TH FLOOR, WISMA DAMAI POINT 88300 LUYANG, SABAH	Delivery To	WIJAYA DAYA SDN BHD LOT NO. 4-7, 8TH FLOOR, WISMA DAMAI POINT 88300 LUYANG, SABAH		Certificate No	300000PS794
Product Description Size Specification	PC STRAND 15.24MM PL FL LHL 15.24 MM ASTM A416/A 416M-2010 LOW RELAXATION			•	Date Of Issue PO'No SO No Delivery Order No L/C No	10.05.2013 PO67 4030500620 8030503695
Container No					Quantity / No of Colls	9.994 MT / 3

Batch No / No							Mechanica	I Properties				
	Diameter (mm)	Section Area (mm2)	Breaking Load (kN)	Y/Strength 1% (kN)	0.2% Proof Load (kN)	Total Elongation (%)	Modulus Elasticity (kN/mm2)	Relax loss		-		
B3095D0079	15.23	140.00	274.50	251.40	257.00	5.30	195.10	3.15	 			
B3095D0081	15.23	140.00	274.50	247.10	254.00	5.30	193.90	. 3.15	 	1	 	
B3095D0082	15.22	140.00	273.60	245.60	252.00	6.00	191.50	3.15	 		 	

TESTING - Assessment of Anchorages <u>On-site Suitability Test</u>

- The anchorage should be deemed satisfactory provided that the test results obtained from the on-site suitability tests for <u>selected</u> anchorage are in accordance with
 - Clause <u>11.2.12</u>: Apparent free tendon length limits.
 - Clause <u>11.2.13</u>: Rate of prestress loss,
 - Clause <u>11.2.14</u>: Alternatively, rate of displacement of anchor head,
 - Clause <u>11.3.4</u>: Proof load-time data proof load not reduced after 15min observation.
 - OR Clause <u>11.3.5</u>: Displacement load-time data at maintained proof load, creep should be less than 5% Δe after 15min observation.
 - Clause <u>11.3.6</u>: Residual load-time data permitted rate of load loss limited to 1% at 5min, 15min, 50min, 150min, 500min, 1day, 3days, 10days period of monitoring.

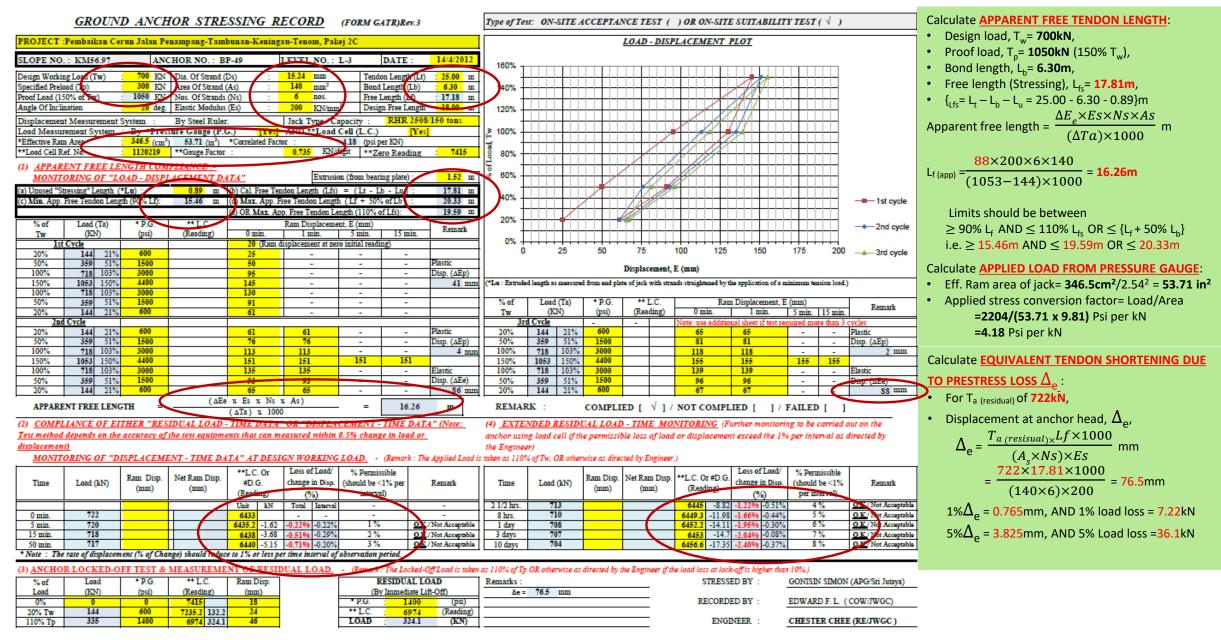
- OR Clause <u>11.3.7</u>: Displacement-time data at residual load - rate of displacement should reduce to 1% Δe or less per time interval for observation periods 5min, 15min and 50min, 150min, 500min, 1day, 3days, 10days period of monitoring.
- Clause <u>11.2.15</u>: Corrosion protection, and
- Clauses <u>11.4.10</u>: Recommendation on Interaction of anchorage (only for closed spaced fixed anchorages e.g. less than 1m apart)
- Note: If load has not attained a constant value after 10 days, further monitoring may extend up to 30days at 7 days intervals.
- <u>Note</u>:- If the anchorages that are to be used in the works and, on satisfactory completion of the on-site suitability test, the cumulative relaxation or creep has exceed 5% initial residual load or $5\%\Delta_e$, respectively, the anchorage should be restressed and lock-off at 110% Tw or the required design preload.

TESTING - Assessment of Anchorages <u>On-site Acceptance Test</u>

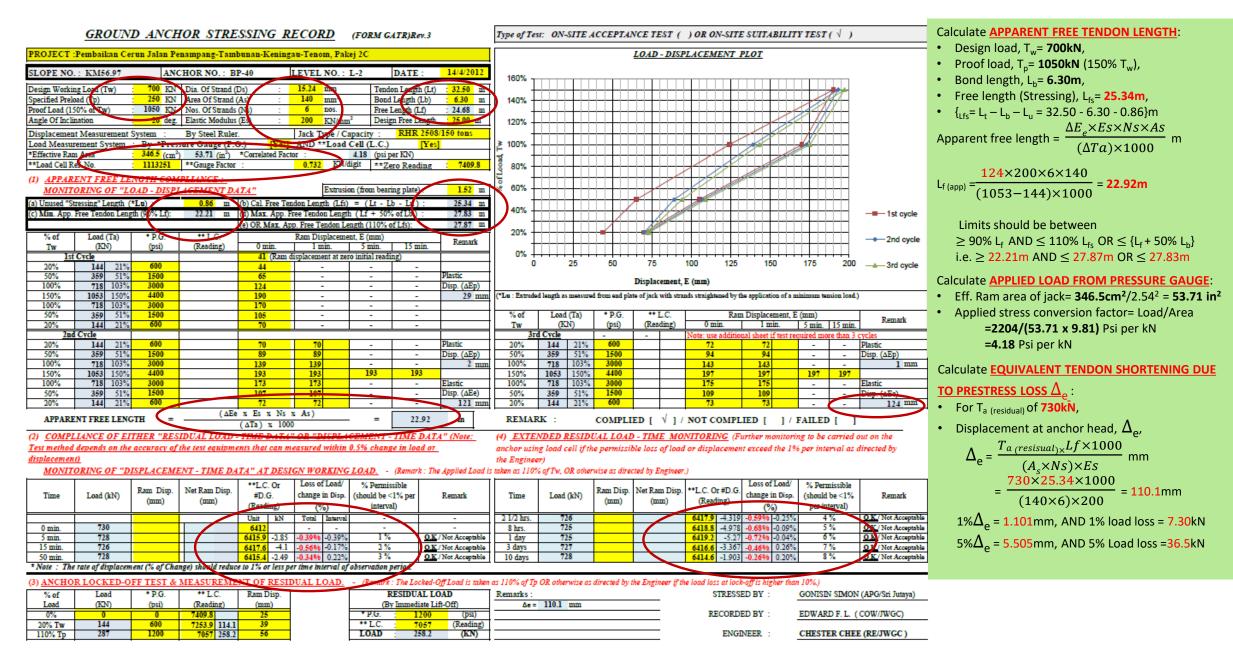
- The anchorage should be deemed satisfactory provided that the test results obtained from the on-site acceptance tests for <u>ALL</u> anchorage are in accordance with
 - Clause <u>11.2.12</u>: Apparent free tendon length limits.
 - Clause <u>11.3.2</u>: Achieved maximum proof load 150%Tw,
 - Clause <u>11.3.4</u>: Proof load-time data proof load not reduced after 15min observation.
 - ► OR Clause <u>11.3.5</u>: Displacement load-time data at maintained proof load, creep should be less than 5%∆e after 15min observation.
 - Clause <u>11.4.6</u>: Residual load-time data rate of load loss should reduce to 1% at 5min, 15min and 50min monitoring period.
 - OR Clause <u>11.4.7</u>: Displacement-time data at residual load - rate of displacement should reduce to 1% Δe or less per time interval for observation periods 5min, 15min and 50min.

- <u>Note</u>: if rate of load loss exceed 1% OR rate of displacement exceed 1% Δe , further monitoring may extend up to 10days. (Refer Table 15)
- Note: If the "Load-time data" or "Displacement-time data" testing is without load cell, each reading should be taken at least 3 times and results averaged in order to minimize errors, particularly where a re-stressing operation is involved.

TESTING - IN SUMMARY

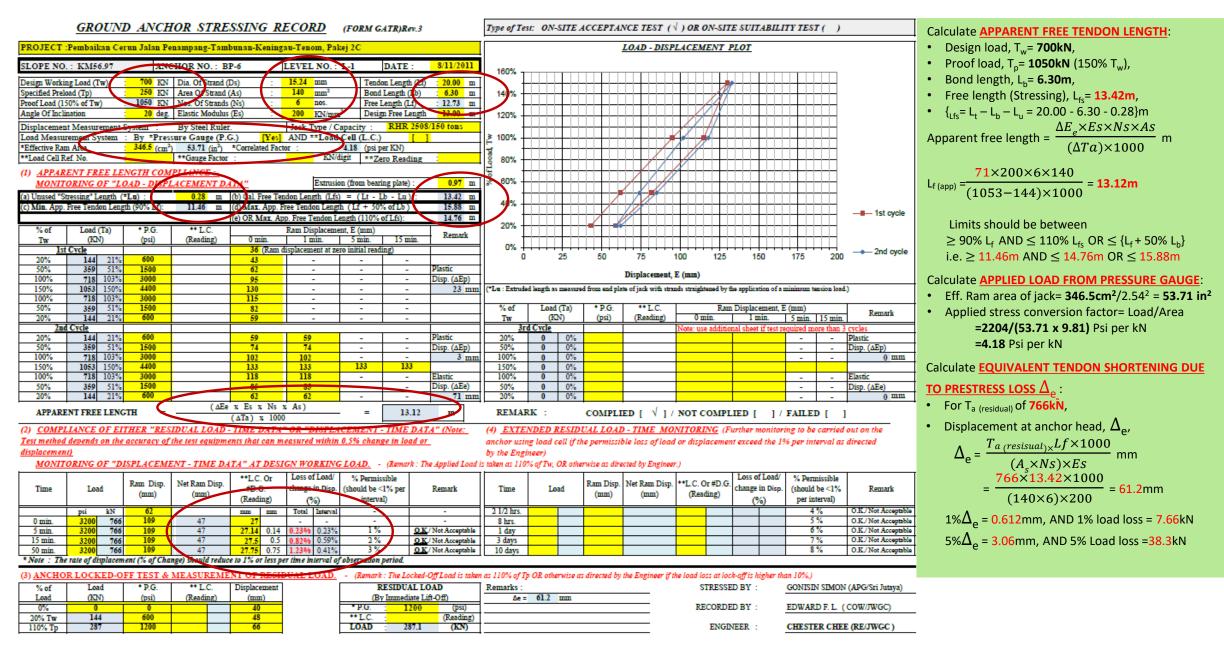

On-site Suitability Tests	On-site Acceptance Tests
To be tested in advance on selected anchorage (<u>minimum 3 nos</u> ., additional for differing type, ground condition, capacities, Inclination etc).	To be tested in <u>all anchorages</u> except those already tested for on-site suitability test.
Load-Displacement Test - 3 minimum cyclic loading (from 10%/20% to 150%) and unloading test from 150% to 20%/10%), Observation period at start, 1min, 5min and 15min.	Load-Displacement Test - 2 minimum cyclic loading (from 10%/20% to 150%) and unloading test from 150% to 20%/10%), Observation period at start, 1min, 5min and 15min.
(1) If proof load reduce by more than 5% in <u>15min</u> ; OR (2) If displacement of anchor head <u>exceed 5%</u> <u>of the Δe in 15min</u> ; Then, carry out <u>2 further proof load cycles</u> and record its elastic behaviour.	(1) If proof load reduce by more than 5% in 15min; OR (2) If displacement of anchor head exceed 5% of the Δe in 15min; Then, then investigate and record diagnosis, abandon the anchorage if cannot achieved the required proof load.
If 5% criterion <u>doesn't exceed</u> , then proceed with the apparent free tendon length calculation.	If 5% criterion <u>doesn't exceed</u> , then proceed with the apparent free tendon length calculation.

TESTING - IN SUMMARY

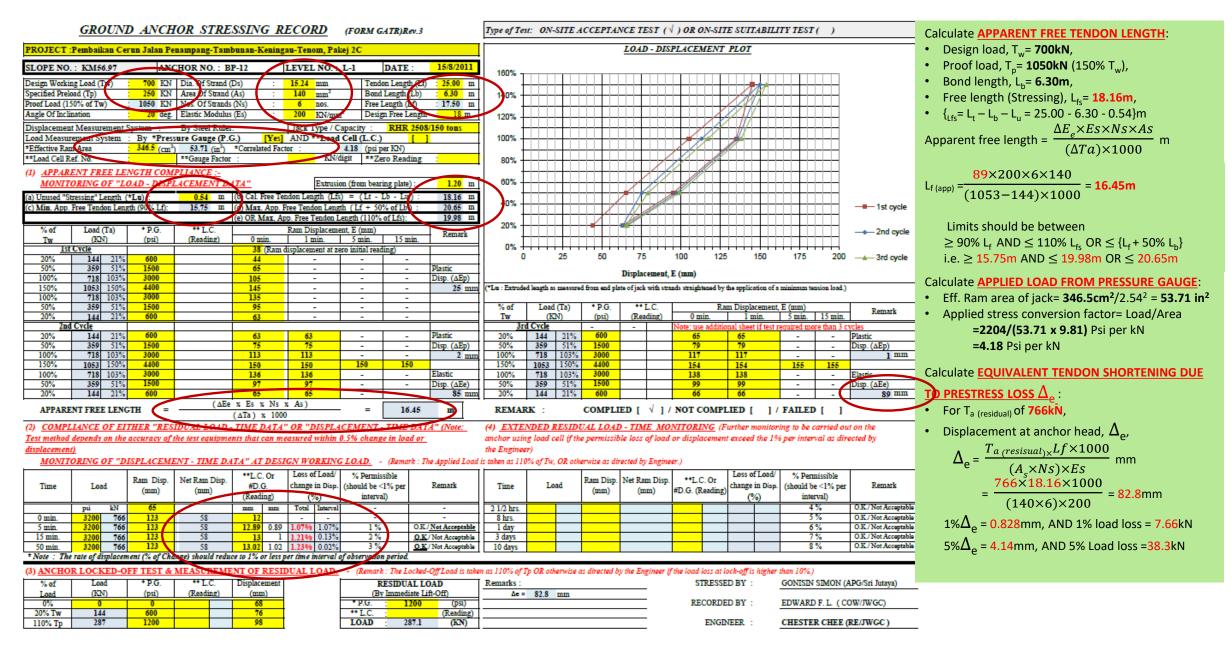

On-site Suitability Tests	On-site Acceptance Tests
If apparent free tendon length falls outside	If apparent free tendon length falls outside
the limits, carry out further 2 cycles up to	the limits, carry out further 2 cycles up to
proof load and observe its elastic behaviour.	proof load and observe its elastic behaviour.
If anchorage behave elastically, proceed to	If anchorage behave elastically, proceed to
residual load/time test for 5min, 15min and	residual load/time test for 5min, 15min and
50min and continue to 10days, may be	50min, may be extended for 3 days or if
extended upto 30 days at 7days intervals if	necessary upto 10days if load/time or
load/time or displacement/time has not	displacement/time has not attained a
attained a constant value. (Prefer to be	constant value. (Can be monitored either with
monitored with load cell of 0.5% accuracy)	load cell or dial gauges of 0.5% accuracy)
Check rate of prestress loss or rate of	Check rate of prestress loss or rate of
displacement falls within allowable limits or	displacement falls within allowable limits or
not, then either	not, then either
(1) carry out creep test, if required	(1) abandon and replace or
(2) accept the anchorage or	(2) reduce capacity or
(3) reject the anchorage.	(3) restress the anchorage

ON-SITE SUITABILITY TEST SAMPLE RECORDS

ON-SITE SUITABILITY TESTS - 3cycles up with monitoring up to 10days



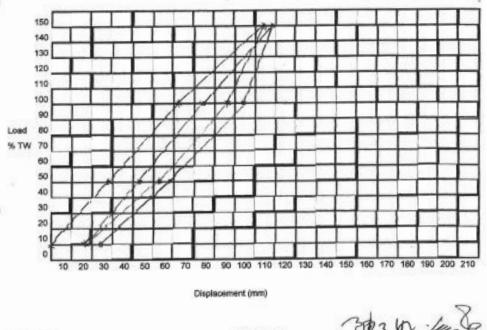
ON-SITE SUITABILITY TESTS - 3cycles up with monitoring up to 10days

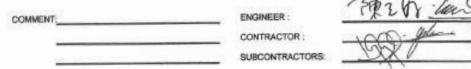


ON-SITE ACCEPTANCE TEST SAMPLE RECORDS

ON-SITE ACCEPTANCE TESTS - 2cycles up with monitoring up to 50 minutes

ON-SITE ACCEPTANCE TESTS -3cycles up with monitoring up to 50minutes




ANCHOR STRESSING RECORD

Contrast Nam	100	Renedial	Works Along July	es Ramo - Tekpiel -	Mope 15		Wachceage Nex	IP11 GDA INT LAVE	
Antiongel	ostim :	Wall 2					Rhost No.	1	
type of Test		-	ier			Acceptance	Date	3-11-97	
ircosing Die	al.								
Dete Streased Jacod Type Verit Type / C Load Meanin Displacement Displ	ingreacity neuronal Styre resonancement d al	aant System		5-11-97 6 holos RRH-1506/159082N 7scenare Gange Steel Rolar 70 82N 708 RN 1050 RN 1050 RN 1050 RN	Data Hanned No.of burs or Street Dia of bars or street Touckon free length (Touckon Bood length (Touckon Bood length (Touckon Bood length (Characteristic Elastic Modulus Touckon Arms Collengta : 158 n 155	da (stensing) (aurrice)		19-8-97 6 15.25 13.45 14.05 6 296.7 193 860	M M KN KN KN KN KN
doublination				1	2	3	4	5	
Tatix cast				19-8-97	19-8-97	29 - 8 - 97	19-8-57	19-8-97	19-8-57
lar(deys)				7	7	28	28	28	28
Brough (Nin	(5.88			32.2	12.9	и.	33.6	37.3	37.6
Looi	Cond KN	PW	Dieptace	enenti (ma)	Ham / Fendion Displacement	Anshor tend Displacement	Controlled Displacement	Time	Reports
1			0 000	Init		HAN 98.37		30.02	
let Cycle						14.07	0	50.93	
D D	350	248.1	80 75		29	37.82	29.37	MUN	
0	700	4962	191		63	37.21	62,88	10:05	
25/150 cflat 5 min	10.50	744.0	17.8		109	36,66	16.0	10-06	
offer 15 min	700	4962	139		86	36.65	\$2.43	10.07	
0	350	2488	120		51	36.69	12.4	12:09	
D	20	45%	16		17	37.81	17.28	50.09	-
ad Cycle	-	-	200				17.28	10.10	the Cycle
1	79	495	88 111	85	17	37.81 37.13	42.95		percased
0	700	4962	142	54.2	73	36.92	74.17	10:12	ENspirecement
29/150	1080	Tada	175	126	937	36.54	108.55	16:13	
flor 5 mm	1		176	126	807	36.52	108.57	10-18	and Carls
flor 15 min	200	4962	135	176	107	36.43	63.64	10.29	Dad Cycle Elaste
a	350	2461	101	127	94	37.63	18.44	10.30	Displacement
	TD	496	92	92	23	37.79	253	03:30	853
d Cysle									Tel Cycle
0.000	-								personnent
	-			-		1.			Displacement
100 125/150 Alter 5 min									
		-							Sel Cycle
dur 15 mie O									Silverie .
									Duplacement
			-						
			Valuar% Change			135/36/39/0%		194,0858,514,175	•
15 min 1	54,96/36.	63/0.06%		154.39/97.33/1.09%	2 1/2 beam		# tean	/	
t day_	1		3 days		10 days	1		24	-
COMME	NTS:	Visaboring [Lond = 5459 pri (7	70 KHjElongalion*	នារា	ENGE		1231	Nº le
	1	look off st 2	1729 pri . The site	apation in 32,04mm.		CONTRA	393 3	ast	Me-
	20	The residual	level in 2600pml.			SUBCONTRA	ACTOR .	-XA	

TYPICAL STRESSING RECORD SHEET

Contractname : Remedial work along Ranau - Telupid slope 16 Anchorage location : Wall two	Anchoregeno: BP 17 / GA 1st Layer Sheetno: 2 Date: 5-11-97	
Tendon free length (stressing)	13.4	M
90 % free length	12.1	M
110% free length or free +50% bond length	14.8 / 16.4	м
Apparent tendon free lengthAt . Es. Elastic displacemen	L	
Apparent landon free length - 2nd cycle	14.3	м
Apparent tendon froe length - 3rd cycle		M

